
JOURNAL OF COMPUTATIONAL PHYSICS 37, 274-279 (1980) 

Note 

A Functional Relation and an Acceleration Procedure for 
Calculating the Voltage Response of Josephson Junctions 

1. INTRODUCTION 

The  voltage response of a  current-driven finite Josephson junction is a  time  average 
and  a  space average. The  convergence to the periodic behavior upon  which the time  
average depends can be  very slow at low damp ing. In this note we derive a  functional 
relationship for the voltage response. We  then exploit this relationship by means  of an  
extrapolation technique to accelerate the computation of the time  average upon  which 
the voltage depends.  

Functional relationships which use power series forms of the error in a  numerical 
approximation in order to accelerate or improve a  computed solution are well known 
and  are generally called Richardson extrapolation (cf. [ 1  I). The  technique introduced 
here follows this principle in general  terms, but is in fact different from it and  novel. 
Computat ions show the corresponding accelerative technique to be  effective. 
Moreover, it appears to be  the only known accelerative technique for the problem 
treated here. 

In the current-driven case and  in appropriate units, the jump 4(x, t) in the argu- 
ment of the electron wave function (order parameter) across the gap  in a  Josephson 
junction is a  solution of the following problem for the sinffiordon equation with 
damp ing u, 

#,, + 4  - $ ,, + s in 4  = 0 , O<x<l (1.1) 

4,(0,0 = K O ,(LQ=H+~, t > 0. (1.2) 

Here H and  I are the applied magnetic field and  the applied current, respectively, also 
in appropriate units. The  choice of units, while enabl ing us to normalize the doma in 
of the junction to x E [0, 11, does not in fact restrict the junction’s physical length. 
The  boundary conditions (1.2) correspond to an  asymmetrically driven junction and  
other possibilities exist (cf. [2]). 

The  initial data $(x, 0) and  4,(x, 0) are not usually specified since the voltage 
response is sought and  is defined as the following average: 

(1.3) 
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Sometimes the space average in this definition is replaced by setting < = 0, say. 
The resulting value of V may be seen to be the same (cf. [3]). Although this change 
would not alter the accelerative method to be introduced, we adhere to the definition 
(1.3) of V since if provides the most general setting for both the derivation of the 
functional relation as well as the accelerative computations to be performed. We 
forego further discussion of the derivation of this problem (l.l)-(1.3) and of the ex- 
planation of the variables used since they are well known (cf. [3-5 I). The object of 
this note is to derive a functional relation for V and to exploit this relation to ac- 
celerate the computation in (1.3). 

In Section 2 we derive the functional relationship (2.6) and introduce the accelera- 
tion procedure. In Section 3 we discretize (l.l)-(1.3) and perform computations to il- 
lustrate the acceleration. These computations as well as the estimates show the 
method to be effective. 

2. FUNCTIONAL RELATION AND ACCELERATION PROCEDURE 

Calling $t(t) = J”i fil(<, t) dt, we may write (1.3) as 

v= 115 f [J(t) - J(O)]. (2.1) 

Since the lim it exists, gt(t) must tend, as t + co, to a periodic function (actually an 
almost periodic function) with period T = 27r//v. Thus g(t) itself has the form 

qw) = vt + p(t) + p(t), P-2) 

where p(t) is a periodic function with period T= 27r//v and where p(t) is a remainder 
which vanishes as t --) co. (Solutions (2.2) are thought to exist for which T= 27rr/V, 
where r is some rational number, typically a positive integer. The ensuing derivation 
is unmodified in this latter case; the corresponding extrapolation formula is not 
exhibited here since the change is so slight.) 

Setting 

(2.3) 

and combining with (2.2), we get 

m(t) + $(O)= tV+p(t) + p(t). (2.4) 

Writing this relation with t set equal to t + T and subtracting the result from (2.4) 
gives 

(t + T) v(t + T) - o(t) = TV + p(t + T) -p(t). (2.5) 

581.37’2 IO 
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Solving for V (=27r/T), we get the following implicit extrapolation formula. 

27rv(t + T) 
v = 27r + t(v(t) - v(t + T)) + P(f + T> - PW . 

From this we get our acceleration formula by dropping the p’s: 

27cv(t + T) 
va = 2n + t(v(t) - v(t + 1”))’ (2.7) 

If we assume that p(t) is differentiable and tends to zero like t-l, then by the mean 
value theorem and for some 0, 0 < 8 < 1, we have 

p(t -t T) -p(t) = Tp’(t + BT) = yc 

(If p(t) = o(l), but not necessarily O(t-I), this estimate would change to o(tC ‘). The 
precise rate of decay of p(t) is unknown to us.) Using (2.8) in (2.6) we see that 
V - V, = O(t--‘) (or o(t-‘) if p(t) = o(l)). Thus referring to (2.4), we see that the 
extrapolation formula converges to V with an error O(t-‘), while the standard 
method converges like O(t-‘). 

The acceleration formula (2.7) is used as follows. Initial data, 4(x, 0) and 4,(x, 0) 
are chosen and the problem (1.1) and (1.2) for Q(x, t) is solved forward in time. At 
each time t we compute v(t) from (2.3). Using v(t) as an estimate for V, we compute 
an estimate T(t) = 2n/v(t) for T. Then we advance the computation of Q(x, t) to the 
time t + T(t). We use the resulting v(t + T(t)) and v(t) itself to compute the 
accelerated V, from (2.7). We must emphasize that this need not be the only strategy 
for using the acceleration formula (2.7). For example, by setting V, = V and 
T= 2x/V in (2.7), the resulting expression may be vieewed as an equation for V to 
which any effective iteration method might be applied (e.g., Newton’s method). 

3. COMPUTATIONAL VERIFICATION 

To perform computations to test our method, we discretize the entire process. Let 
J > 0 be some prescribed integer and introduce the mesh increments At = Ax = J ‘. 
The customary discretization of (1.1) and (1.2) produces the following problem for 
the determination of the 4Ji”, an approximation to d(j Ax, n At), j = 0 ,..., J, n = 0, l,... . 

(l+aAt)#+‘= 2+041-s) #-);-‘+$(#J’+, +q4ymI)-At2 sin#y,(3.1) 

~$7 - t$;f = H Ax, 4; - #J”-, = (H + I) Ax, n = 2, 3,... , (3.2) 

The initial values, &’ and 4;. j = l,..., J, are determined in the standard manner 
from the initial data. Finally we discretize the l integration in (1.3) (equivalently in 
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TABLE I 

n 

500 25 
1000 50 
2000 100 
3000 150 
5000 250 

10000 500 
20000 1000 
30000 1500 

500 12.5 
1000 25 
2000 50 
3000 75 
4000 100 
5000 125 

10000 250 
20000 500 
30000 750 

1” v<,@,,) 

(a) df = 0.05 
2.101 
2.967 
3.096 
3.139 
3.172 
3.198 
3.211 
3.215 

47 3.385 
43 3.257 
41 3.225 
41 3.231 
40 3.222 
40 3.223 
40 3.224 
40 3.223 

(b) /ZII = 0.025 

2.135 
2.644 
2.893 
2.914 
3.016 
3.04 
3.09 
3.114 
3.123 

118 4.068 
96 3.224 
87 3.154 
85 3.149 
84 3.145 
83 3.141 
82 3.142 
81 3.141 
81 3.141 

(2.3)) using Simpson’s rule. This is essentially the approach used in [4]. Of course, 
this discretization of the original problem introduces truncation errors. However, such 
errors are so well studied that we merely note that with Ax sufficiently small, 
application of the triangle inequality will handle this new source of computational 
error. The result will be to add to the error estimate a term like O(dx*) which charac- 
terizes the discretization error corresponding to (3.1) and (3.2). 

We illustrate the results of our experiments with a typical sample tabulation of the 
data n, t, = n At, v(t,), [27r/(Atv(t,))],’ and V,(t,). For Table I the following data are 
used: 

0 = 0.2, I = 0.8, H=4, 4(x, 0) = 9, $4(X, 0) = 0. (3.3) 

Parts (a) and (b) of the table illustrate the sensitivity of the computations to the 
choice of At = Ax. At = 0.05 in (a) and At = 0.025 in (b). The correct values of the 
voltage correspond to the finer mesh of part (b) which may be taken as representative 
of exact values, as determined by standard computational verification. The product 
JAx = 1 for both cases (a) and (b) so that the dimensionless junction length is the 
same for both cases. 

I The square bracket in this expression, which is also used in the table, signifies taking the integer 
part. 
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FIGURE 1 

As an example notice from part (b) that the unaccelerated value of the voltage 
v(t,) = 3.09 N 3.1 gives the voltage correct to two figures after 10,000 times steps. 
The accelerative procedure has produced these two figures V,(t,) N 3.1 after about 
2000 time steps. Va(fn) achieves three figures after 4000 time steps but the unac- 
celerated value v(t,) has not yet achieved the third figure even after 30,000 time steps 
whereupon we abandoned it. 

To illustrate exploitation of the method and the pilot calculation of the table, we 
plot a portion of V-Z response curve of the Josephson junction in Fig. 1. Here we use 
the data in (3.3) except that Z is varied to produce the response curve. For each Z, we 
use n = 1500 for part (a) of Fig. 1 and corresponding to part (a) of Table I while we 
use n = 4000 for part (b) of Fig. 1 and corresponding to part (b) of Table I. The plots 
compare the voltage v = v(t,) produced by the unaccelerated method with the 
accelerated voltage V,. Lines connecting some data points in Fig. 1 are drawn only 
as a convenience. The curves produced have some missing portions. While these must 
be supplied by more intensive computational effort, we forego producing them since 
our objective here is to verify the accelerative effect introduced and not to make a 
systematic study of the junction response. We do however remark that in the units 
used a resonance (peak) in the response curve is expected for V= x, in agreement 
with the computations illustrated here (cf. (4]).2 

‘The authors are grateful to the referee for this observation 
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